Chronic poverty: scrutinizing estimates, patterns, correlates, and explanations

Shahin Yaqub
Poverty Research Unit,
School of African and Asian Studies,
Sussex University, Falmer, Brighton,
England. BN1 9QN
s.yaqub@sussex.ac.uk

Working Paper No 21

Chronic Poverty Research Centre

ISBN Number 1-904049-20-6

October 2002

Acknowledgements

This article draws on my doctorate ‘Born Poor, Stay Poor? Intergenerational Persistence of Poverty, North and South’. It was funded by the UK’s Economic and Social Research Council (award R00429734678) and supervised by Michael Lipton and Robert Eastwood. I thank Nancy Birdsall, Marzia Fontana, Carol Graham, David Hulme, Selim Jahan, Andrew Shepherd and Howard White. Shubham Chaudhuri, John Giles, Javier Herrera, Patricia Justino, Kaspar Richter and Moses Shayo gave permission to cite preliminary results.
Summary

The paper lists estimates of chronic poverty incidences in 25 countries. Research reveals its ‘patterns’ and socioeconomic ‘correlates’, but hardly ‘explanations’. The patterns are three (economic insecurity, short-range mobility and path dependency) and the correlates are four (spatial, demographics and household type, human capital and labor, and physical assets). Important similarities are observed between developing and affluent countries in such patterns and correlates. In countries of vastly differing wealth, apparently people face some similar problems in fully participating and the burden of poverty is unequally shared over time, i.e. chronic poverty. Recognizing this, the paper draws on research in affluent countries centered more closely on life experiences. Such ‘lifefull’ approaches to chronic poverty contrast with present ‘lifeless’ approaches in developing countries. Useful explanations should understand the reversibility of chronic poverty, timeliness of reversals and relevance of outcomes.
Introduction

Purely idiosyncratic poverty would, by definition, strike any person anytime. Data tracking households longitudinally through time demonstrates that poverty is nowhere purely idiosyncratic. Over a given number of years, approximately 50 percent of all person-years of absolute poverty can be expected to be suffered by just 30 percent of the population in rural India, 21 percent in rural Zimbabwe, 16 percent in rural Pakistan and 11 percent in rural China. In affluent countries, 50 percent of all person-years of absolute poverty strikes just 8 percent of the population in the UK and 6 percent in the USA. Despite presumably more equal economic opportunities, via greater public provisioning of services, welfare systems and more complete markets, a concentration of nationally-defined absolute poverty remains. In possibly its broadest sense – as subjective self-evaluation, where one may suppose idiosyncrasy – poverty remains systematically and unequally shared (even if regal lives experience occasionally an *annus horribilus*).

What causes a segment of the population – the chronically poor – to suffer over time more than their share of poverty? Microlongitudinal research provides two kinds of relevant information: *patterns* of chronic poverty, and *correlates* of chronic poverty. Section 2 lists chronic poverty incidences. Methodological differences are stressed that unfortunately prevent direct international comparison of incidences. The section examines patterns of economic mobility at the poorest tail of the welfare distribution, isolating three mobility problems facing the chronically poor: economic insecurity, short-range mobility, and path dependence. Section 3 summarizes multivariate statistical models of mobility from varied country contexts and research methods. These suggest that socioeconomic correlates of chronic poverty fall into four types: spatial, demographics and household formation, human capital and labor, and physical assets. As noted in section 3, a general limitation of microlongitudinal studies – and, by extension, this paper too – is that the focus on tracking individuals might underemphasize societal processes in chronic poverty. These remained
outside the scope of the paper, partly because there is little empirical literature allowing
evidence in microlongitudinal studies to be connected to broader issues around
socioeconomic opportunity (c.f. Müller 2002).

The paper shows commonality between poverty in developing countries and poverty in
affluent countries in the three mobility patterns and four mobility correlates. Throughout there
is no claim that poverty in developing countries (commonly anchored to subsistence
materialism) is equivalent to poverty in affluent countries (with comparatively generous
materialism). Strikingly though, however rich a country, poverty is unequally shared. This is
obviously different from relative poverty (some have to be poorest), and even chronic relative
poverty (apparently some are always poorest), since it refers to persistence below a given
absolute threshold. Microlongitudinal datasets in very different societies apparently suggest,
to some extent, similar life experiences for those chronically trapped poor within their
respective societies.

This point is exploited in Section 3 on explanations. Poverty models estimated using
longitudinal data are remarkably similar to those obtained already using cross-sectional data,
and I feel provide little extra information towards proper explanations of chronic poverty.
Such 'lifeless' models of complex – and possibly permanently harmful – life experiences at
different ages, are presented reductively and largely with weak exposition of theoretical
foundations. Section 3 aims not to evaluate lifeless methodology, but to discuss how, by
virtue of richer datasets, fuller life-course analyses have been attempted in affluent
countries. I see lifefull explanations as potentially providing better understanding of whether
chronic poverty is reversible, the best timing of any such reversals, and the ultimate welfare
relevance to the lives thus changed. Intergenerational literature is cited to indicate the
potential of lifefull approaches. The concluding section includes suggestions for chronic
poverty research in developing countries in the light of issues raised in the paper.
Estimates and patterns of chronic poverty

Chronic *absolute* poverty (CAP) refers to the persistently poor and chronic *relative* poverty (CRP) the persistently poorest. CAP reflects low socioeconomic growth of individuals, i.e. low absolute mobility. CRP reflects low socioeconomic re-ranking of individuals, i.e. low relative mobility. Table 1 reports CAP and CRP estimates in 25 countries, based on microlongitudinal datasets longer than one year. This condition excluded estimates listed as note 3 under Table 1. Six Latin American, eight African, eight Asian and three European countries were included. Table 1 distinguishes between chronic *duration*, viz. poor in all periods, and chronic *shortfall*, viz. ‘permanent’ welfare below poverty levels. Permanent welfare is what remains after transitory fluctuations are purged. Different methods exist in each approach. Importantly duration and shortfall approaches need not classify people consistently.

Table 1 lists only CAP and CRP *incidence* – the percentage of people or households persistently below different poverty lines. Chronic poverty ‘depth’ and ‘severity’ (temporal analogues to Foster, Greer, & Thorbecke’s (1984) ‘alpha 1’ and ‘alpha 2’ poverty measures) are estimable once permanent welfare is obtained. Presently they are rare for developing countries, and omitted from the table. Importantly the few available studies show the chronically poor can differ in how far they lie below the poverty line, and this can be correlated to observable characteristics.
Table 1: Percentage of population or households chronically poor

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample location</th>
<th>Absolute</th>
<th>Relative</th>
<th>Unit of analysis</th>
<th>Obs period</th>
<th>Number of waves</th>
<th>Indicator</th>
<th>See note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>Perm shortfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Argentina</td>
<td>1 urban</td>
<td>6 Males</td>
<td>1994-95</td>
<td>Income</td>
<td>2</td>
<td>Income</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 Chile</td>
<td>2 rural</td>
<td>6 Females</td>
<td>1994-95</td>
<td>Income</td>
<td>2</td>
<td>Income</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 El Salvador</td>
<td>3 rural</td>
<td>Hh</td>
<td>1995-97</td>
<td>Income</td>
<td>2</td>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Mexico</td>
<td>4 urban</td>
<td>6 Hh</td>
<td>1994-95</td>
<td>Income</td>
<td>2</td>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Peru</td>
<td>5 rural and urban</td>
<td>23</td>
<td>36</td>
<td>Pop 1997-99</td>
<td>3</td>
<td>Cons/Exp 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Lima</td>
<td>6 rural and urban</td>
<td>14</td>
<td>8</td>
<td>Hh 1985-90</td>
<td>2</td>
<td>Cons/Exp 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Venezuela</td>
<td>7 rural and urban</td>
<td>44</td>
<td>10</td>
<td>Hh 1994-95</td>
<td>2</td>
<td>Income 1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 rural and urban</td>
<td>44</td>
<td>9</td>
<td>Hh 1995-96</td>
<td>2</td>
<td>Income 1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 rural and urban</td>
<td>36</td>
<td>10</td>
<td>Hh 1997-98</td>
<td>2</td>
<td>Income 1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Côte d’Ivoire</td>
<td>10 rural and urban</td>
<td>14</td>
<td>Hh 1985-86</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 rural and urban</td>
<td>13</td>
<td>Hh 1986-87</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 rural and urban</td>
<td>25</td>
<td>Hh 1987-88</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Egypt</td>
<td>13 rural and urban</td>
<td>19</td>
<td>Hh 1997-99</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Ethiopia</td>
<td>14 rural</td>
<td>25</td>
<td>30</td>
<td>10 Hh 1994-95</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Israel</td>
<td>15 rural and urban</td>
<td>6</td>
<td>Pop 1983-95</td>
<td>2</td>
<td>Income 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Madagascar</td>
<td>17 Antananarivo</td>
<td>65</td>
<td>9</td>
<td>Pop 1997-99</td>
<td>3</td>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 South Africa</td>
<td>18 KZ-Natal non-white</td>
<td>18</td>
<td>9</td>
<td>Hh 1993-98</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Zimbabwe</td>
<td>19 rural</td>
<td>Hh 1994-97</td>
<td>4</td>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Bangladesh</td>
<td>20 rural</td>
<td>12</td>
<td>Hh 1970-77 Retrospective</td>
<td>Cons/Exp 1, 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 rural</td>
<td>39</td>
<td>Hh 1987-90</td>
<td>2</td>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Hh 1990-94</td>
<td>2</td>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 China</td>
<td>22 rural</td>
<td>7</td>
<td>Hh 1978-89 Retrospective</td>
<td>Income 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 rural</td>
<td>6</td>
<td>Hh 1987-99</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 rural Fujian</td>
<td>8</td>
<td>Hh 1975-84 Retrospective</td>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 rural Sichuan</td>
<td>6</td>
<td>Hh 1991-95</td>
<td>5</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 rural southwest</td>
<td>20</td>
<td>Pop 1985-90</td>
<td>6</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 India</td>
<td>27 Gokulpuram (rural)</td>
<td>12</td>
<td>Hh 1977-85</td>
<td>2</td>
<td>Wealth 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Palanpur (rural)</td>
<td>3</td>
<td>Hh 1974-83</td>
<td>2</td>
<td>Income 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 rural</td>
<td>33</td>
<td>7</td>
<td>Hh 1968-70</td>
<td>3</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 semi-arid rural</td>
<td>22</td>
<td>48</td>
<td>Hh 1975-83</td>
<td>9</td>
<td>Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Indonesia</td>
<td>31 rural</td>
<td>9</td>
<td>Hh 1997-98</td>
<td>2</td>
<td>Cons/Exp 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Malaysia</td>
<td>32 rural and urban</td>
<td>11</td>
<td>Males 1967-76 Retrospective</td>
<td>Earnings 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Pakistan</td>
<td>33 rural</td>
<td>5</td>
<td>26</td>
<td>Hh 1986-90</td>
<td>5</td>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 rural northwest</td>
<td>63</td>
<td>Hh 1996-99</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 South Korea</td>
<td>35 rural and urban</td>
<td>11</td>
<td>Hh 1996-97</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Vietnam</td>
<td>36 rural and urban</td>
<td>29</td>
<td>Hh 1992-97</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Hungary</td>
<td>37 rural and urban</td>
<td>10</td>
<td>Pop 1987-89</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pop 1992-94</td>
<td>3</td>
<td>Income 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Poland</td>
<td>38 rural and urban</td>
<td>10</td>
<td>Hh 1987-88</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hh 1988-89</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Hh 1989-90</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hh 1990-91</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Hh 1991-92</td>
<td>2</td>
<td>Cons/Exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Russia</td>
<td>39 rural and urban</td>
<td>13</td>
<td>Hh 1992-93</td>
<td>2</td>
<td>Cons/Exp 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Hh 1994-98</td>
<td>2</td>
<td>Cons/Exp 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Absolute poverty lines were defined for approximately 2100 to 2300 calories plus basic non-food items, except in Bangladesh (1970-77), Hungary (1992-94), South Africa, and Venezuela where poverty lines provide a minimum consumption bundle, and Côte d’Ivoire and Indonesia with arbitrary absolute lines. Relative poverty lines defined the
poorest quintile, except in Israel which defined the poorest 15 percent and China (1987-99) which defined those below half mean consumption in each wave.

Note 2. Panels for Peru, Russia, Venezuela and partly Chile were constructed by matching dwellings and household characteristics. The Kenyan panel is longitudinal on ‘clusters’ of about 100 geographically proximate households, from which a dozen households were randomly drawn in each wave. Samples were small for Chile (146 households), Bangladesh 1970-77 (199 households), India 1977-85 (83 households) and India 1974-83 (120 households). The Mexican result pools several panels lasting five quarters each during 1992-97, and the Argentine result pools seven panels lasting four semesters each during 1993-98 – for these, the table states mid-years.

Note 3. Excluded because panels were shorter than one year, the incidence of chronic absolute poverty shortfall in Belarus was seven percent in 1994 (World Bank 1996); in urban China was 32 percent in 1997 (Gibson et al. 2002); in Georgia was one percent, four percent, five percent, four percent in 1997, 1998, 1999, and 2000 respectively (World Bank 2002); in Papua New Guinea was 15 percent in 1996 (Gibson 2001); in Rwanda was 14 percent in 1983 (Muller 1997); and in Thailand was one percent, six percent and seven percent in 1996, 1998 and 1999 respectively (Bidani & Richter 2001).

Close attention to methodology reveals differences that prevent international comparison of available CAP and CRP estimates. Most estimates in Table 1 anchor CAP to subsistence consumption, and CRP to the poorest quintile (see table note 1 for exceptions). Higher poverty lines generate larger poverty estimates. The table reports variations in welfare indicators (differing in temporal variability), observation periods (more time passes, more welfare-changing events occur), number of waves (longer interval, more transitory movements ignored), and units of analysis. Often observation periods are short (consecutive years) or waves are minimal (two waves). In four cases, a single wave was used to obtain
longitudinal data retrospectively. Retrospective data may suffer recall inaccuracies, but not selective longitudinal sample attrition, though admittedly an even representative sample at time 2 may not necessarily report data that is representative of earlier time 1, if selective events, like migration and death, already occurred. Estimates using individuals as the analytical unit simply scale for household size, i.e. none considered intrahousehold dynamics (c.f. Yaqub 1999). Other issues regarding the table are: 1/ four estimates rely on samples smaller than 200 households (see table note 2); 2/ only basic sampling information is reported (e.g. rural or urban site), and most were not nationally representative; 3/ few studies evaluated longitudinal sample attrition; 7 4/ few studies evaluated potential attenuation bias in chronic poverty estimates due to errors in measuring the welfare indicator (which exaggerate dynamics). 8

Patterns observed in microlongitudinal datasets suggest three interrelated mobility challenges facing the chronically poor. First, much economic mobility amongst the poor is actually just transitory fluctuation – an economic insecurity problem. Second those escaping CAP and CRP do not go far beyond that poverty – a distance problem. Third escaping poverty is harder the longer its duration – a path dependence problem. Importantly, identical problems apply to poverty in affluent countries.

Economic insecurity problem. Chronic poverty is not necessarily a stagnant situation. Even if seemingly as mobile as others, the chronically poor may face greater insecurity from transitory fluctuations, thus making their mobility qualitatively different. Admittedly some of this might be artifacts of measurement error, if occurring particularly at extremes of the welfare distribution. Lower intertemporal mean income (or consumption), i.e. chronic poverty in the shortfall approach, combines with higher intertemporal variability in Brazil (Neri et al. 1999), Sichuan China (McCulloch & Calandrino 2000), Indonesia (Pritchett, Suryahadi & Sumarto 2000), Pakistan (McCulloch & Baulch 1999), Spain (Salas & Rabadán 1998), Sweden (Björklund & Palme 1997), and USA (Gottschalk & Moffitt 1994) – but not in
southwest China (Jalan & Ravallion 1998). Intertemporal coefficients of variation (CV) were negatively correlated to income level in two of three ICRISAT Indian study regions, and the range between the highest and lowest household CVs was greatest in the riskiest, drought prone villages (Walker & Ryan 1990, p.85), i.e. the extra income variability from living in riskier climates was unevenly distributed across households. Using retrospective data in urban areas of Colombia, Ecuador, Guatemala, Honduras, Nicaragua, Paraguay, and Venezuela, Gaviria (2001) found that the probability of drops in consumption was greater for those in the lowest quintile of a long-run socioeconomic index (constructed from dwelling characteristics and household durables).

In a wide review, Sinha, Lipton & Yaqub (2002) showed that poverty in many developing countries combines riskier, more uninsured, livelihoods with lower growth prospects. Gottschalk & Moffitt (1994) characterized this problem as ‘good jobs’ versus ‘bad jobs’ in the USA, where high stable pay contrasts with low unstable pay. In developing and affluent countries, the poor manage their few assets against fluctuations (Moser 1998; Ruggles & Williams 1989), but the transitory poor might well dominate such smoothing transactions. Townsend (1995) on India and Udry (1995) on Nigeria showed that crop, currency and credit – rather than livestock and consumer durables – accounted for short-run dynamics in asset positions, and probably these smaller assets are owned least by the chronically poor. Lokshin and Ravallion (2001) showed that the time taken to recover from a single negative income drop was longer for households with lower long-run income levels, i.e. chronically poor. Okrasa (1999) found in Poland access to formal and informal consumption smoothing mechanisms were inversely correlated to years spent in poverty.

Distance problem. Many of those escaping poverty do not rise far, even with observation periods lasting several years. Again, measurement errors could mislead by falsely signaling some movements across the poverty line, but the proportions are large. In South Africa, 41 percent of absolute poverty exits remained within 1.25 times the poverty line after five years
(Carter & May 2001) – this was 57 percent in Indonesia (Skoufias et al. 1999) and 52 percent in Pakistan (Kurosaki 2001). In Egypt 91 percent of those escaping absolute poverty remained within twice the poverty line two years later (Haddad & Ahmed 2002), and in Chile 35 percent 18 years later (Scott & Litchfield 1994). Similarly, in Hungary 53 percent of exits from 'under half-mean income' were to '50-75 percent of mean income' four years later (Speder 2001); this was 57 percent in China between 1987-99 (Benjamin, Brandt & Giles 2001) and 82 percent in the UK between 1990-94 (Jarvis & Jenkins 1996).

Escape from relative poverty is also short-ranged. In India (Gaiha 1988), Russia (Jovanovic 2000), Britain (Jarvis & Jenkins 1996), Vietnam (Haughton et al. 2001), South Africa (Maluccio, Haddad & May 2000), and Peru (Glewwe & Hall 1998), between 36 – 70 percent of exits from the poorest quintile remained in the adjacent quintile up to five years later. Even for longer observation periods, the proportions are high: 24 percent in India nine years later (Drèze, Lanjouw & Stern 1992), 40 percent in Malaysia nine years later (Randolph & Trzcinski 1989), 48 percent in the USA 21 years later (Gottschalk & Danziger 1997).

Importantly the distance problem is not just a case of the deeply poor being unable to rise far above the poverty line, i.e. just about poverty depth. Transition matrices for Peru (Herrera 2001b), South Africa (Carter & May 2001), Pakistan (Kurosaki 2001), Canada, Germany, UK and USA (Antolin et al. 1999) do not suggest strong correlation between poverty depth and nonpoverty height.

Path dependence problem. The chance of escaping poverty appears related to poverty duration. Error! Reference source not found. shows that the probability of poverty increases conditionally on past years in poverty – after four years of poverty, most remained poor. Not shown in the table is that large proportions of those leaving poverty re-enter after the first year of non-poverty, and the conditional probability of re-entering poverty declines with duration in non-poverty (same sources as Error! Reference source not found.). This
seems consistent with the distance problem where poverty exits remain close to the poverty line.

Table 2: Percentage of poor remaining poor conditional on T years of poverty

<table>
<thead>
<tr>
<th>T years poverty</th>
<th>Absolute USA</th>
<th>Absolute UK</th>
<th>0.5*median income Neth/lds</th>
<th>0.5*median income Germany</th>
<th>0.5*median income Canada</th>
<th>0.5*mean inc Hungary</th>
<th>Poorest quintile Poland</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>50</td>
<td>32</td>
<td>45</td>
<td>56</td>
<td>34</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>59</td>
<td>63</td>
<td>69</td>
<td>59</td>
<td>100</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>66</td>
<td>75</td>
<td>65</td>
<td>61</td>
<td>27</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>78</td>
<td>80</td>
<td>60</td>
<td>65</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>81</td>
<td>87</td>
<td>92</td>
<td>58</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>70</td>
<td>91</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>85</td>
<td>100</td>
<td>100</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>87</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Percentages derived from indicated sources.

Sources. Canada: Antolin et al. (1999), Hungary: Braithwaite (2001), Neth/lds and Germany: Muffels et al. (1999); Poland: Okrasa (1999); UK: Devicienti (2001); USA: Stevens (1994);

Frequently cited reasons for poverty path dependency include physical asset depletion, even if this is not as statistically well demonstrated as might be presumed. Dercon (1998) and Carter & May (2001) argued asset-based ‘poverty traps’ exist – facing imperfect financial markets, more investment is self-financed, but smoothing income fluctuations repeatedly depletes savings, and so the poor cannot undertake economic activities leading to accumulation, and hence face low growth. This view is consistent with evidence on economic insecurity amongst the poor, presented earlier. Less cited as a cause of path dependency is that poverty duration may also erode physical vitality (e.g. Bidinger et al. 1991 on morbidity in India) and skills (e.g. Rutkowski 2001 on unemployment path dependency in Hungary).

Some path dependency could be due to welfare-generating characteristics that we cannot observe. In this view *Error! Reference source not found.* indicates a sorting process, so over time only the less able, motivated and resilient remain poor, assuming these are the unobserved welfare-generating characteristics. The extent of this is important to know because income gain at a particular time will not lower the chances of future poverty if the unobserved factors remain unchanged. Cappellari & Jenkins (2002) estimated unobserved
heterogeneity accounts for about 40 percent of path dependency in Britain – Giraldo et al. (2001) argued that once the evolution of unobserved heterogeneity is also accounted for, all path dependency in Italy is due to such characteristics. Obviously such estimates really just measure shortcomings in our explanations of poverty, posing the seemingly impossible research problem of identifying unobserved poverty culprits. Possibly many such unobserved poverty culprits result from prior duration in poverty, perhaps as permanent biological damage or behavioural adaptations, and if so, seem approachable only with fuller knowledge of life experiences. This issue is raised later to contrast ‘lifeful models’ with ‘lifeless models’ of chronic poverty.

Correlates of chronic poverty: lifeless models

Research towards explaining chronic poverty correlate household socioeconomic characteristics to one of five mobility concepts: 1/ changes in absolute welfare levels, 2/ shortfalls below the absolute poverty line in intertemporal-mean welfare, 3/ duration in absolute poverty, 4/ exit chances from absolute poverty, 5/ exit chances from relative poverty. *Error! Reference source not found.* lists multivariate models of mobility, covering 27 discrete samples in 21 countries.
Table 3: Summary of models identifying mobility correlates

<table>
<thead>
<tr>
<th>Type</th>
<th>Study</th>
<th>Sample</th>
<th>Mobility concept</th>
<th>Country</th>
<th>Period</th>
<th>N waves</th>
<th>N hhlds</th>
<th>Indicator</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Change in levels</td>
<td>Chile, rural</td>
<td>1968-86</td>
<td>2</td>
<td>146</td>
<td>Income per capita</td>
<td>Scott & Litchfield 94</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Change in levels</td>
<td>China, rural</td>
<td>1987-97</td>
<td>10</td>
<td>3100</td>
<td>Income per prime age</td>
<td>Giles 02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Change in levels</td>
<td>Côte d’Ivoire, rural</td>
<td>1987-88</td>
<td>2</td>
<td>230+</td>
<td>Exp per capita</td>
<td>Grotaert et al. 97</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Change in levels</td>
<td>Côte d’Ivoire, urban</td>
<td>1987-88</td>
<td>2</td>
<td>250+</td>
<td>Exp per capita</td>
<td>Grotaert et al. 97</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Change in levels</td>
<td>El Salvador, rural</td>
<td>1995-97</td>
<td>2</td>
<td>489</td>
<td>Income per capita</td>
<td>Conning et al. 00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Change in levels</td>
<td>El Salvador, rural</td>
<td>1995-97</td>
<td>2</td>
<td>494</td>
<td>Income per household</td>
<td>Santella & Vega 00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Change in levels</td>
<td>Ethiopia, rural</td>
<td>1994-95</td>
<td>2</td>
<td>1411</td>
<td>Exp per capita</td>
<td>Dercon & Krishnan 00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Change in levels</td>
<td>India, Bombay slum</td>
<td>1987-92</td>
<td>2</td>
<td>220</td>
<td>Earnings of hhd head</td>
<td>Swaminathan 97</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Change in levels</td>
<td>India, rural cultivating hhold</td>
<td>1975-83</td>
<td>9</td>
<td>873</td>
<td>Income per capita</td>
<td>Gaiha & Deolalikar 93</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Change in levels</td>
<td>Indonesia, rural</td>
<td>1993-97</td>
<td>2</td>
<td>676</td>
<td>Income per capita</td>
<td>Fields et al. 01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Change in levels</td>
<td>Indonesia, rural</td>
<td>1997-98</td>
<td>2</td>
<td>8141</td>
<td>Exp per capita</td>
<td>Skoufias et al. 99</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Change in levels</td>
<td>Mexico, rural- ejido</td>
<td>1994-97</td>
<td>2</td>
<td>1011</td>
<td>Income per hhd</td>
<td>Davies et al. 99</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Change in levels</td>
<td>Peru, Lima</td>
<td>1985-90</td>
<td>2</td>
<td>696</td>
<td>Cons per cap</td>
<td>Glewwe & Hall 98</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Change in levels</td>
<td>Poland</td>
<td>1995-96</td>
<td>2</td>
<td>4919</td>
<td>Exp equivd</td>
<td>Okrasa 99b</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Change in levels</td>
<td>Russia</td>
<td>1994-98</td>
<td>2</td>
<td>2390</td>
<td>Exp per capita</td>
<td>Jovanovic 00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Change in levels</td>
<td>South Africa, KZ-N non-white</td>
<td>1993-98</td>
<td>2</td>
<td>1355</td>
<td>Exp per capita</td>
<td>Maluccio et al. 00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Change in levels</td>
<td>South Korea</td>
<td>1994-98</td>
<td>5</td>
<td>3000+</td>
<td>Exp per capita</td>
<td>Goh et al. 91</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Change in levels</td>
<td>Venezuela</td>
<td>1997-98</td>
<td>2</td>
<td>7747</td>
<td>Income per capita</td>
<td>Freije 00</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Change in levels</td>
<td>Zimbabwe, rural</td>
<td>1994-97</td>
<td>4</td>
<td>320+</td>
<td>Net crop income hhd</td>
<td>Owens & Hoddinott 98</td>
<td></td>
</tr>
</tbody>
</table>

Four methodological points are noted. The first borrows from macroeconomic growth literature, which has a similar motivation, only a different unit of analysis. Many country characteristics have been correlated to macroeconomic growth, but the problem is that “variable x₁ will soon be found to be significant when the regression includes variables x₂ and x₃, but it becomes nonsignificant when x₄ is included” (Sala-i-Martin 1997, p.178). Generally studies do not subject mobility correlates to robustness checks, say of the sort suggested in macroeconomic growth literature. Second, type 1 studies assume mobility is symmetric, i.e. identical correlation with upward mobility as downward mobility. Study types 4 and 5 model also the chances of entry into poverty and sometimes show different effect sizes to those for poverty exit. Third, generally studies assume linearity, i.e. identical effects throughout the distribution. Yet Baulch & McCulloch (1998), for example, find education to be non-significant at lower poverty lines, and Gaiha & Deolalikar (1993) find that several ‘squared variables’ have statistically significant effects in their models.
Fourth, and most importantly, the emphasis on individuals and households in microlongitudinal data risks insufficient attention to broader societal processes, such as the distribution of socioeconomic opportunities. Aggregate economic growth reduces poverty only where it outpaces inequality, but inequality rises whenever it outpaces economic mobility (because mobility, by sharing over time prosperous and hardship years, reduces inequality). Growth, inequality, and CRP all determine CAP. Notice the issue is one of relative pace in each of the quantities. Thus "increased yearly inequality must be offset by a sufficiently large increase in mobility… extent of mobility is irrelevant to changes in inequality" (Gottschalk & Danziger 1997, p.7). Statistical correlations between mobility, inequality, growth, and poverty, remain largely unknown.⁹

To attempt a summary, first I listed all socioeconomic characteristics included as regressors in mobility models, as well as their direction of effect and statistical significance. Second a simple ‘vote counting method’ tallied the number of discrete samples in which a socioeconomic characteristic showed a statistically significant correlation with upward mobility (i.e. an effect on mobility different from zero at the five percent level). Vote counting was done across discrete samples rather than models to avoid double counting. Inconsistent significant correlations across models arose only once in which case the model with the greater number of controls was selected for the vote.

Vote counting has recognized limitations as a meta-analytic method because it wastes statistical information (Hunter & Schmidt 1990; Bushman 1994). It is biased towards studies with large samples detecting small effect sizes, and so variations in sample sizes across studies may cause erroneous conclusions. The studies in this review with sample sizes below 400 did not report markedly unusual significant results. A ‘publication bias’ towards reporting ‘significant’ results might be assumed, in which case votes for ‘not significantly
different from zero’ would be attenuated. Moreover, the focus on significance ignores the important issue of effect sizes.

Table 4: Correlates of upward mobility, vote counting across 27 study samples

<table>
<thead>
<tr>
<th>Source</th>
<th>(\text{Provincial effects?})</th>
<th>Positive significant</th>
<th>Negative significant</th>
<th>Not significantly different from zero</th>
<th>Not included</th>
<th>Total samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Spatial</td>
<td>\text{Sig effects in 12 samples}</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>2 Regression to mean</td>
<td>Base-yr inc level. If poorest 20%? Num yrs poor.</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>3 Household type</td>
<td>Age hh head</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Household size</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Rise household size</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Num dependents</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>More dependents</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Female hh head</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Hhold educ, head's and total</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>4 Human capital</td>
<td>More education</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>5 Physical capital</td>
<td>Land</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Gained land</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>18</td>
<td>27</td>
</tr>
</tbody>
</table>

Source: Same as Error! Reference source not found.

Table 4 shows that characteristics associated with upward mobility fall into four types: 1/ spatial (e.g. province, urban, proximity to market), 2/ demographics and household type (e.g. household size, age structure, sex, race), 3/ human capital and labor (e.g. education, health, labor experience, economic sector), and 4/ physical assets (e.g. land, livestock, housing etc.). Two observations immediately occur. First, socioeconomic correlates of mobility obtained from longitudinal data do not differ markedly from poverty correlates identified from cross-sectional data. Such poverty correlates have been obtained from multivariate regressions of welfare levels or ‘poor/ nonpoor’ status estimated on cross-sectional data. The point is shown in Annex 1. Second, developing country mobility correlates are broadly similar to those found in affluent countries, as discussed below.

Births, deaths, ageing and age-dependency correlate with mobility. Household age structure had mobility effects consistent with long held views about age-profiles for poverty, income and wealth in developing and affluent countries (e.g. Kearl & Pope 1983; Lipton 1983). In developing country models, generally, household formation is simplified to female headship (statistically insignificant). In affluent countries it is treated as a major issue, possibly
triggering as much as 40 percent of poverty spells (e.g. Bane & Ellwood 1986; Cantó-Sánchez 1996; Jenkins 2000). That household formation is not more prominent in developing countries is surprising given long-standing poverty literature regarding complex-households, household splits, child fostering and polygamy (e.g. van Schendel 1982; Serra 1997; Magnani, Bertrand, Makani & McDonald 1995). “(F)or many women becoming a mother is a greater disposing factor to poverty than gender alone… a non-contributing father in any household type is among the most severe welfare risks mothers and children face” (Bruce & Lloyd 1997, p.221).

Higher levels of household human and physical capital, and gains in these over time, correlate with upward mobility. Notably several models showed insignificant correlations – generally the signs of the coefficients were in the expected direction, but apparently their effect sizes were too small (if not zero). In Indonesia, South Africa, Spain and Venezuela, Fields, Cichello, Freije, Menendez & Newhouse (2001b) found that the proportion of variance in income growth that was explained by education of household head was low. Credentialist selection in the labor market might mean that, to some extent, upward mobility requires not only being better educated, but also better educated relative to others. Even for affluent countries, with presumably more efficient labor markets, a hierarchy of school certificates is argued to correspond to hierarchically organized labor markets (Kivinen & Silvennoinen 2002). Qualitative variations – not normally included in mobility models – might explain why greater public investment in education has not always led to greater equality and mobility, e.g. Hanushek and Lavy (1994) on Egypt, and Handa (1996) on Jamaica.

Spatial correlates of socioeconomic mobility seem to exist in the form of provincial effects and pro-urban bias. Spatial variations in public provisioning of services, like health, education and communication, certainly exist in affluent and developing countries. Interestingly domestic migration had ambiguous effects on socioeconomic mobility in El Salvador (Sanfeliu & Gonzalez-Vega 2000), India (Drèze et al. 1992), and Malaysia.
(Trzcinski & Randolph 1991). Relating to the poverty of others, ‘neighborhood effects’ and ‘peer effects’ have been found (e.g. Handa, Huerta, Perez & Straffon 2001 on Mexico; Hanushek, Kain, Markman & Rivkin 2001 on USA; McCulloch & Joshi 2001 on Britain). Datcher (1982) found community characteristics were at least as important as personal characteristics in explaining the lower achievements of blacks relative to whites in the USA.

Explanations of chronic poverty: reversibility, timeframes and relevance

Lifeful and lifeless approaches differ in their treatment of three important issues: reversibility, timeframes and relevance. The usefulness of any explanation of poverty lies in showing how poverty can be reversed. The distinction between transitory and chronic poverty conveniently implies reversibility. Transitory poverty reverses because it is just turbulence in the welfare trajectory due to the vicissitudes of life. In contrast, it is not so obvious how chronic poverty is reversible. Its very chronicity might imply reversible and irreversible forms.

The reversibility of chronic poverty lies in the variability through time of ‘levels’ and ‘distribution’ of welfare-generating characteristics, and the ‘welfare-returns’ to those characteristics. In affluent countries, genetics is openly discussed – and hotly contested – as influencing welfare-generating characteristics (e.g. Bowles & Gintis 2001; Ceci & Williams 1999), especially with regard to explaining chronic poverty. This stands in contrast to developing country poverty literature where it is basically absent. Lifeful research, and much less lifeless research, can hope to tackle directly the threat to antipoverty commitments posed by genetic determinism, by properly situating within life experiences welfare-generating characteristics, and perhaps to some extent the welfare-returns obtained from them.

Simple (genetically determined) characteristics, like sex and race, are intrinsically time-invariant, and only their welfare-returns can vary. The real argument lies over complex
human characteristics, like ability, not only in terms of whether genes determine them, but also how socioeconomic environmental factors alter the effect that genetics have on characteristics. An obvious concern is that poverty – as opposed to genes – may permanently damage the potential for welfare-generating characteristics. For example, wide ranging evidence shows that childhood is foundational for lifetime characteristics in cognition, physical vitality and personality, and this is traced to specific behavioural and non-genetic biological mechanisms (Yaqub 2002). As people reach biological maturity, alterations to their developmental trajectories rely increasingly on alterations in behavioural relationships. Adults develop and respond to life experiences, e.g. Osmani (1992) on physiological adaptations, Jovanovic & Nyarko (1997) on acquired expertise in farming, Sen (1997) on effects of long-term unemployment, and Olson & Schober (1993) on the ‘satisfaction paradox’ observed amongst people that are objectively poor. Admittedly even childhood research could drive over-deterministic conclusions (e.g. all poor children become poor adults). Avoiding such conclusions requires close inspection of life events to reveal how people specifically resist or reverse damage from poverty, either during childhood or later as adults (Yaqub 2002).

A second issue is about reversing chronic poverty within acceptable timeframes, and at least within lifetimes of sufferers. Shortened lives from prolonged exposure to poverty reduce the numbers of poor, and so chronic poverty solves itself. Shortened lives may also reverse the chronic poverty of those living, say by lowering household age-dependency (a poverty correlate in lifeless models). Obviously death should count as policy failure, and yet, our temporal poverty measures – especially chronic incidence, presented in Table 1 – are insensitive to our aversion to these patently perverse reversals arising from the failure to solve chronic poverty within relevant lifetimes. Lifeless explanations usefully list characteristics that correlate with welfare changes, but we also need to understand timeframes for poverty reversals. Even if the most important welfare-generating characteristics are in principle time-variable, practical policy-levers to affect change may be
lacking or weak – for instance, the proven antipoverty link to land contrasted with practical
difficulties in its redistribution (e.g. IFAD 2001). Where poverty proves difficult to reverse
within relevant lifetimes, its prevention at critical points in the life-course may be a cost-
effective alternative.

A third issue relates to making relevant changes. Improving the welfare-returns to a
characteristic may not be welfare equivalent to enhancing the characteristic itself. Moreover
the two are differently time-variant. For example, increasing rewards to unskilled laboring
seems easier than skilling unskilled laborers, and presumably has different implications for
the lives enjoyed. The difference between chronic absolute poverty in affluent countries and
that in developing countries is less stark – though still unequal – if we shift the poverty
concept from materialism to, more fundamentally, human functionings. This point was
clarified by an exchange between Amartya Sen (1983 and 1985) and Peter Townsend
(1985) on welfare valuations of absolute and relative poverty, in the commodity space versus
the capabilities space. Human functionings generate material gain, but are enjoyed
intrinsically. In what sense is the life of a laborer in Bangladesh truly different to the life of a
laborer in Britain? Such considerations should complicate not only our understanding of
historical absolute chronic poverty apparently ‘eliminated’ by country affluence, but also our
explanations of that process in developing countries. It might, for example, question
additional lifetime demands made on chronically poor people by proposed solutions, say in
terms of working longer, more efficiently, and more intensively. Explanations of poverty
should therefore be relevant to evolving development of individual functionings throughout a
life.

The explanatory potential of a life-course approach is implied by welfare correlations: 1/
between offspring and parents, and 2/ between siblings. Both correlate a person’s welfare
with a highly reductive indicator of their prior life (in the form of the welfare of people that
shared that background). Table 5 shows intergenerational and sibling correlations in
earnings, status, and wealth. These can be 'large', especially when long-run measures are used, although a lot of interpersonal welfare variance remains unexplained and regression to the mean exists. Earnings advantages implied by contemporary intergenerational correlations in Britain, for example, are comparable to advantages gained through tertiary education (O’Neill and Sweetman 1995).

Table 5: Intergenerational and sibling correlations in affluent countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Relationship</th>
<th>Measure</th>
<th>R-sqr</th>
<th>Elasticity</th>
<th>R-sqr</th>
<th>Elasticity</th>
<th>R-sqr</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.11</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Son-father</td>
<td>Income</td>
<td>0.15</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Dir-mother</td>
<td>Earnings</td>
<td>-0.07</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>Son-father</td>
<td>Income</td>
<td>0.11</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.17</td>
<td>0.23</td>
<td>0.216</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Dir-father</td>
<td>Earnings</td>
<td>0.35</td>
<td></td>
<td>0.47</td>
<td>0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Ofpg-parent</td>
<td>Income</td>
<td>0.23</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.24</td>
<td>0.43</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Dir-mother</td>
<td>Earnings</td>
<td>0.14</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Ofpg-parent</td>
<td>Wealth</td>
<td>0.25</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Son-father</td>
<td>Earnings</td>
<td>0.15</td>
<td>0.20</td>
<td>0.23</td>
<td>0.43</td>
<td>0.26</td>
<td>0.41</td>
</tr>
<tr>
<td>USA</td>
<td>Son-father</td>
<td>SocSec status</td>
<td>0.08</td>
<td>0.32</td>
<td>0.36</td>
<td>0.07</td>
<td>0.33</td>
<td>0.46</td>
</tr>
<tr>
<td>USA</td>
<td>Brothers</td>
<td>Earnings</td>
<td>0.24</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Brothers</td>
<td>SocSec status</td>
<td>0.44</td>
<td>0.51</td>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: Short-run correlations refer to single year measures of welfare. Long-run correlations rely on different methods, viz. inter-temporal mean, instrumental variables, predicted values, and error autoregression (AR1), used to obtain long-run welfare measures - see sources for details. The elasticity refers to the proportionate change in the offspring measure for a proportionate change in the parental measure.

Source: Atkinson et al. (1983); Björklund & Jäntti (1997); Jäntti & Österbacka for Finland (in Björklund & Jäntti 2000); Corak & Heisz (1998); Couch & Dunn (1997); Dearden et al. (1997); Lillard & Reville (1997); Menchik (1979); Soltow for Norway (in Atkinson et al. 1983); Zimmerman (1992)

Intergenerational and sibling correlations are few for developing countries. Child laboring in Egypt is intergenerationally correlated, especially maternally (Wahba 2001). Walker & Ryan (1990) found that up to 35 percent of variance in household incomes can be explained by just parental characteristics and inheritances at the time of household formation.

Intergenerational occupational persistence is shown in China (Cheung 1998), Russia (Sabirianova 2000), Philippines (Fuwa 1999), India (Krishna & Pattnaik 1997; Drèze et al. 1992), Hungary (Ferge 1987), and South Korea, Japan, and Taiwan (Yun 1994). Depending on offspring-parent pair, intergenerational correlations in schooling years were between 0.31 and 0.42 in South Africa (Burns 2000), and 0.10 to 0.12 in Hungary and 0.09 to 0.14 in
Russia (Gang 1996). In Nigeria, Sierra Leone and Zimbabwe an offspring was up to seven times as likely to attain at least secondary education if also the father had at least secondary education (Peil 1990). In Brazil (Duryea 1998), Guinea (Glick & Sahn 2000), Mexico (Binder 1998), and the Philippines (Bouis, Palabrica-Costello, Solon, Westbrook & Limbo 1998) offspring education attainments were correlated with parental education, after controlling for other characteristics including family income. Interestingly for reversibility, in Brazil, parental education did not explain the ‘value-added’ obtained by those repeating a school year (Gomes-Neto & Hanushek 1994). Sibling correlations in schooling ranged between 0.35 and 0.60 in 17 developing countries, as compared to 0.20 for the USA (Dahan & Gaviria 1999; El Khoury 2001).

Conclusion
Poverty is unequally shared over time, i.e. chronic poverty exists – why? Longitudinal datasets tracking households reveal three patterns of mobility amongst the poor. First transitory fluctuations cause economic insecurity. Second those escaping poverty remain close to the poverty line. Third the chances of escaping poverty depends on its duration. Microlongitudinal data also show that certain socioeconomic characteristics correlate with chronic poverty. This suggests chronic poverty is spatially concentrated, affected by household demographic structure and formation, and depends on access to human capital, labor markets and physical assets. Many of these correlates of poverty were already deduced from cross-sectional data. The literature does not allow these two aspects – patterns and correlates – to be combined to explain processes underlying chronic poverty.

Explanations of chronic poverty, to be useful, need to identify how chronic poverty is reversed, and if they exist, critical points in lifetimes when it can be reversed or prevented. Reversals need to be timely, at least to protect longevity from prolonged exposure to poverty, and there should result developmental impacts in functionings relevant to people’s
lives. On these counts – reversibility, timeframes and relevance – the paper develops the view that explanations of chronic poverty need to move from current lifeless frameworks towards those modeling more closely harmful life experiences. Lifeless models usefully show correlations between different welfare characteristics, many of which merely represent ‘fossilized’ events experienced perhaps before birth. As explanations of chronic poverty, therefore, they do not reveal what amongst those lifetime experiences can be thought of as ‘casual to’, ‘causal to’, or ‘caused by’ chronic poverty.

Early microlongitudinal research in affluent countries, some initiated a century ago (Elder & Johnson 2000), were similarly lifeless. Approaches that emerged subsequently have shared some common features and assumptions (Bynner 2001; Benson 2001). Lives are viewed as trajectories, or serially linked states, operating in interconnected domains of work, family, etc. Trajectories include transitions across biologically and socially determined ‘life-stages’ that condition the sequencing of various events. Thus the developmental impact of events are contingent on their timing in life. Studies emphasize interdependency of lives and the influences of historical context. Important issues of individual agency and constraints are included.

Clearly not everything can be borrowed from this affluent country literature. For example, a theme in life-course research in affluent countries is adult implications of heterogeneous transitions into and out of adolescence, a life-stage that is hardly as well defined in developing countries. Nevertheless arguably lives in developing countries have a regularity eroded in affluent countries by expanding choices: "As modernization continues in North America and Europe life-course arrangements are becoming more dynamic, less standardized and more self-directed. In consequence, modern life-course analysis questions to what extent biographies have lost their determining frames that used to be social origin, gender, age and ethnicity, and highlights how the shaping by structural forces shifts to social
processes of negotiation between the person, social networks, opportunity structures and institutions” (Heinz & Krüger 2001).

The general importance of seeking poverty explanations cognizant of life experiences is probably easily accepted. The difficulty is implementation in data scarce contexts. Some existing quantitative microlongitudinal data might be used more intensively. Sibling correlations can be estimated without longitudinal data, and retrospective data could be used especially for non-pecuniary intergenerational correlations. Qualitative research shows that the poor, whilst always attaching importance to materialism in defining poverty, tend to focus on the content and chronology of their life experiences. Yet, existing qualitative research could be more valuable with different research motivations. “What distinguishes the anthropological approach is sustained attention to both subtleties of meaning and belief (the *emic*) and patterns of observed behaviour and events (the *etic*)… what anthropological and other contextual methods have to contribute to the understanding of poverty is currently expressed too much as a contribution to *emic* understanding and not enough as an alternative perspective on *etic* issues and on the critical interface between *emic* and *etic*” (Booth, Leach & Tierney 1999). Interest in combining quantitative and qualitative analysis has been largely towards verification of poverty measurements and consistency in monitoring (e.g. discussions over triangulation, etc.) and less towards combined methodology on questions relevant to life-course research (Bardhan 1989; Yaqub 2000).

Conventional advice to developing countries on antipoverty can be characterized as pursing ‘social market democracies’, following those found to varying strengths in affluent countries. At the same time, the chronicity of poverty shows similarities in patterns and correlates at the micro-level in both rich and poor country contexts. If the apparent promise of ‘poverty amongst plenty’ is to be avoided as countries develop, I feel poverty explanations must incorporate specific harmful experiences as people continuously develop, maintain and face declining functionings throughout life.
Bibliography

Bardhan, Pranab (1989). *Conversations Between Economists and Anthropologists*. Oxford University Press

Binder, Melissa [1998]. “Family Background, Gender and Schooling in Mexico.” *Journal of Development Studies* V35 N2, pp.54-71

Bruce, Judith & Cynthia B. Lloyd (1997). ‘Finding the Ties that Bind: Beyond Headship and Household.’ In: Lawrence Haddad, John Hoddinott, & Harold Alderman (editors),
Intrahousehold Resource Allocation in Developing Countries. Models, Methods, and Policy. Johns Hopkins, Baltimore

Institute for Social and Economic Studies, University of Essex

Fields, Gary S., Paul L. Cichello, Samuel Freije, Marta Menendez & David Newhouse (2001). *For Richer or for Poorer: Did Household Income Converge or Diverge in the 1990s?* Cornell University

Gottschalk, Peter & Sheldon Danzinger (1997). *Family Income Mobility - How Much is There and Has it Changed?* Boston College, USA

Muffels, Ruud, Didier Fouarge & Ronald Dekker (1999). Longitudinal Poverty and Income
Inequality: A Comparative Panel Study for the Netherlands, Germany and the UK. Working Paper 1, European Panel Analysis Group, University of Essex

Osberg, Lars (2000). Long Run Trends in Economic Inequality in Five Countries – A Birth Cohort View. Economics Department, Dalhousie University

Quisumbing, Agnes (2002). Consumption, smoothing, vulnerability and poverty in rural Bangladesh. Mimeo, IFPRI, Washington DC

Reardon, Thomas, Christopher Delgado & Peter Matlon [1992]. “Determinants and Effects of

Schluter, Christian (1998). Income Dynamics in Germany, the USA and the UK: Evidence from Panel Data. CASE Paper 8, London School of Economics

Scott, C.D. & J.A. Litchfield (1994). Inequality, Mobility and the Determinants of Income Among the Rural Poor in Chile 1968-86. STICERD Development Economics Research Programme DEP 35, London School of Economics

Van Schendel (1981). Peasant Mobility. The Odds of Life in Rural Bangladesh. Van Gorcum, Netherlands

Annex 1: Socioeconomic correlates of poverty from cross-sectional data

<table>
<thead>
<tr>
<th>Country</th>
<th>Urban</th>
<th>Not incl</th>
<th>Female headship</th>
<th>Educated hhold head</th>
<th>Livestock ownership</th>
<th>Employed hhold head</th>
<th>Land ownership</th>
<th>Hhold size</th>
<th>Older hhold head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>Not incl</td>
<td>Not incl</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>Not incl</td>
<td>-</td>
</tr>
<tr>
<td>Ecuador</td>
<td></td>
<td></td>
<td>Not sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Guatemala</td>
<td></td>
<td></td>
<td>Not sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not incl</td>
<td>-</td>
</tr>
<tr>
<td>Kyrgyz</td>
<td></td>
<td></td>
<td>Not sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mongolia</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>Not incl</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Madagascar, rural</td>
<td></td>
<td></td>
<td>Not incl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Not incl</td>
</tr>
<tr>
<td>Lesotho</td>
<td></td>
<td></td>
<td>Not incl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Not incl</td>
</tr>
</tbody>
</table>

Note. + raises and – lowers chances of poverty in multivariate regression models.

Source. World Bank poverty assessments.

Endnotes

1. I calculated these percentages from Gaiha and Deolalikar (1993), Baulch and Hoddinott (2000), Baulch and McCulloch (1999) and McCulloch and Calandrino (2002). They gave population distributions by duration in poverty. They used country-specific poverty lines defined for nutritional adequacy. I ignored the problem of censored observation.

2. See endnote 1. Poverty distributions were from Devicienti (2001) and Rodgers and Rodgers (1993).

3. Britain’s monarch, Queen Elizabeth II, described her experience of 1992 as *annus horribilus* saying it “is not a year I shall look back on with undiluted pleasure”. On subjective welfare see, for example, Graham and Pettinato (2001) and Speder (2001).

4. Where the sample is observed only twice, a transition matrix shows poverty duration by cross-tabulating welfare status in base and terminal years. A problem of censored observation remains. This can addressed statistically if datasets are sufficiently longitudinal (e.g. Muffels et al. 1999). To estimate the permanent component, averaging over time is a simple method (e.g. Jalan and Ravallion 1998) – in this intertemporal transactions costs can be included (e.g. Rodgers and Rodgers 1993). Alternatively the permanent component could be ‘predicted’ from its theoretically supposed correlates, such as education, and with longitudinal data, ‘fixed effects’ from unobservable characteristics, like diligence, can be controlled (e.g. Gaiha and Deolalikar 1993). Alternatively the permanent component could be estimated by modeling serial correlation (e.g. Benjamin et al. 2002).

5. For example, in Gaiha and Deolalikar (1993), only one-third of those chronically poor using the shortfall approach were classified poor all nine years of the panel. Similar inconsistent classifications appear in Baulch and McCulloch (1999) and Dercon and Krishnan (2000).

6. See Dercon and Krishnan (2000); Gibson, Huang and Rozell (2002); Gibson (2002); Jalan and Ravallion (1998); McCall et al. (1999) and Baulch and McCulloch (2000).

8. Notice, if measurement errors are random over time for each household, they would sum to zero over time, leaving chronic poverty estimates from the shortfall approach unaffected. Glewwe and Nguyen (2002) calculate half the mobility in household expenditures, observed in the Vietnam panel, was an artifact of measurement error – large magnitudes were estimated for the Russian and Polish panels (Luttmer 2000) and the Indonesian panel (Pritchett et al. 2000).

9. Aaberge et al. [1999] found no association between inequality and income mobility across the USA, Denmark, Norway and Sweden, and Björklund and Jäntti [1997] found no link between intergenerational mobility and inequality when comparing Sweden and the USA.

10. See Scott (2000) for a discussion of a (small sample, N=146) case where life-cycle effects were not found.

11. It is not, however, fully idiosyncratic. People differ systematically in their exposure, vulnerability, ‘aversion to’ and ‘protection from’ welfare-damaging fluctuations (Sinha et al. 2002). These determine the distribution over time of prevailing transitory poverty. Moss (1998) showed how historically governments in the USA played a pivotal role to not only lower, but also redistribute, private risk for business (pre-1900), workers (1900-1960s) and households (post-1960s).

12. I am not claiming genetic determinism, but just that the issue demands explicit attention, since it clearly diminishes commitments to antipoverty. Many understand the chronicity of poverty as due to people innately lacking welfare-generating characteristics. Similar ideas existed in earlier developing country literature, c.f. Neil
Smelser and Talcott Parsons, but unsurprisingly the ‘modernizing man’ eluded concrete definition and was dropped. Often the poor are claimed to form an underclass that dynastically transmits poverty, genetically and otherwise. I note that even moderate positions acknowledge some genetic determinism, at least when chronic poverty is evaluated subjectively – ‘pessimistic Pradeep’ contrasted with ‘optimistic Omar’. Against all this is the fact that humans are over 99 percent genetically identical and the largest differences are intra-African, since that is where all our ancestors are argued to have originated (Crow 2002; Diamond 1999). For policy relevance, ethical questions over genetic manipulations are just being explored in the face of recent technological breakthroughs (Bris 2001).